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Abstract

In the majority problem, we are given n balls coloured black or white and we are
allowed to query whether two balls have the same colour or not. The goal is to find
a ball of majority colour in the minimum number of queries. The answer is known
to be n − B(n), where B(n) is the number of 1’s in the binary representation of
n. In [5], De Marco and Pelc proved that even if we use a randomized algorithm
which is allowed to fail with probability at most ε, we still need linear expected
time to determine a ball in majority colour. We prove that any such algorithm has
expected running time at least

(
2
3 − δ(ε)

)
n, where δ(ε) → 0 as ε → 0. Moreover,

we provide a randomized algorithm showing that this result is best possible.
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1 Introduction

In the ‘majority problem’, we are given n balls coloured black or white. At
any stage we are allowed to select two balls and ask whether they have the
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same colour or not. Our task is to find a ball of majority colour, or decide
that no such ball exists. How many questions do we need to ask, in the worst
case? Clearly n − 1 questions suffice. For example, we can compare the first
ball with all the rest. The following recursive algorithm does slightly better:
If n is odd, it is enough to determine majority in the first n− 1 balls. Indeed,
a ball which is in majority colour when restricted to the first n − 1 balls, is
also in majority in the totality of n balls. On the other hand if no majority
exists in the first n− 1 balls, then the n-th ball is in majority. If n is even, we
can pair the balls arbitrarily, make n/2 comparisons, throw out all pairs for
which the colours were different, and keep one ball from each pair for which
the colours were the same. Then, clearly, it is enough to determine majority
in the balls left. An easy inductive argument now shows that this algorithm
determines majority in at most n−B(n) questions, where B(n) is the number
of 1’s in the binary representation of n. Saks and Werman [7] showed that in
the worst case we do need that many questions. We refer the reader to [1,2]
for surveys on the majority problem and some of its variants.

What happens if we allow some randomization in our algorithm for deter-
mining majority? To be more precise, at each step we are allowed to pick the
two balls to be compared using some probability distribution which is allowed
to depend on our current knowledge so far. We allow our algorithm to fail
with probability at most ε. (I.e. given any input, the randomized algorithm
must produce a correct answer with probability at least 1− ε.) To the best of
our knowledge, this was first studied by De Marco and Pelc [5]. They showed
that randomization does not improve the running time by much, in the sense
that there are inputs for which the expected running time of any randomized
algorithm is linear. Although it does not appear explicitly in their work, their
proof shows that for any randomized algorithm which fails with probability at
most ε, there is an input on which the algorithm has expected running time
is at least n/40. (Provided ε is sufficiently small.) We already know that one
can solve the majority problem in n steps (even without randomization) so it
is natural to ask what the right constant for the speed of the running time (in
the worst case) is. This question is answered by the following two theorems
from [4].

Theorem 1.1 For every ε > 0 if n large enough, then there is a randomized
algorithm for determining majority on n balls which fails with probability at
most ε and has expected running time at most 2

3

(
1− ε

3

)
n.

Theorem 1.2 For every δ > 0, there exists an ε = ε(δ) > 0 such that, for
every large enough n, any randomized algorithm for determining majority on



n balls with expected running time less that
(

2
3
− δ

)
n, fails with probability at

least ε on some input.

2 Sketch proof of Theorem 1.1

As De Marco and Pelc observed, if we know that the difference between the
number of white and black balls is large, then there is a randomized algorithm
with small expected running time for determining majority (with small error
probability). The proof of the next lemma is a simple application of the
Chernoff bound.

Lemma 2.1 Suppose that the difference between the number of black and
white balls is at least 2αn. Then there is a randomized algorithm for determin-
ing majority which fails with probability at most ε and has expected running
time at most 1

2α2 log
(

1
ε

)
.

On the other hand, the next lemma shows that if we know that the dif-
ference is small then we need expected time about 2n/3. To see why such a
result might be true, observe that if we have roughly equal number of white
and black balls we can initially partition them into n/2 pairs. After mak-
ing n/2 comparisons, about n/4 of them will result in the the balls having
the same colour which we can discard. So after n/2 comparisons we are left
with about n/4 balls in which we need to determine majority and a recursive
argument gives that we need a total of about 2n/3 comparisons.

Lemma 2.2 Suppose that the difference, in absolute value, between the num-
ber of white and black balls is at most d = 2αn. Then there is a randomized
algorithm which determines majority with no error whose expected running
time is at most 2n+d

3
.

The final ingredient in the proof is that after a small sampling we can de-
termine with very small error probability whether the difference in the number
of white and black balls is large or small.

3 Sketch proof of Theorem 1.2

Observe that a randomized algorithm is nothing else than a probability dis-
tribution on the set of all deterministic algorithms. Thus, it seems reasonable
to expect that a good understanding of the behaviour of every deterministic
algorithm, will yield a good understanding on the behaviour of randomized
algorithms as well.



Let A be a deterministic algorithm and suppose we run this algorithm
when the balls are coloured uniformly and independently at random. Its
running time T becomes a random variable. We will show that if A fails with
probability at most ε then the expected running time E(T ) is large.

Theorem 3.1 Let A be any deterministic algorithm which fails with proba-
bility at most ε when the balls are coloured independently and uniformly at
random. Then, provided n is large enough, we have that E(T ) > 2

3
(1 − γ)n,

where γ = γ(ε)→ 0 as ε→ 0.

Having proved this, a simple averaging argument will yield the required
result. (The observation that in order to find lower bounds on the running
time of randomized algorithms it is enough to find lower bounds on the running
time of each deterministic algorithm is due to Yao [8].)

Our knowledge after each step of a deterministic algorithm can be de-
scribed by a graph G, on vertex set [n], where i is joined to j if and only
if we have already compared ball i to ball j. The edges of G are labelled
with a yes or a no, depending on the answer we have obtained. Within each
component of G, we have enough information to determine whether two balls
have the same colour or not. Let Mi be the difference, in absolute value,
between the number of black and white balls in component i. We can ignore
the components where the difference is 0, and order the other components so
that M1 > M2 > . . . > MC . So, regarding the majority problem, the vector
(M1, . . . ,MC) contains all the information that we are interested in.

The next result from [3] shows that instead of proving that any such algo-
rithm has large expected running time, it is enough to prove that the expected
number of components E(C) in which the difference is not 0, is not too large.
In [4] we gave a short inductive proof of this lemma but here we omit it due
to lack of space.

Lemma 3.2 Let A be as above and suppose that the balls are coloured inde-
pendently and uniformly at random. Then 3

2
E(T ) + E(C) > n.

Suppose that when A announces a ball of majority colour, there are C >√
εn components left, of sizes M = M1 > M2 > . . . > MC > 1, with M 6

α
√
C, for some α to be determined later. One can show that the probability

that the announced ball is not in the majority is at least

Pr(M < ε2M2 + ...+ εCMC) =
1

2
Pr(ε2M2 + ...+ εCMC /∈ [−M,M ]),

where the εi take the values ±1 uniformly and independently at random. It
seems impossible to determine this probability, but we are only interested in



a lower bound. So when is this probability minimized? Intuitively, this prob-
ability is as small as possible when Mi = 1 for each i > 2. This is indeed
the case and it follows easily from the solution of Erdős to the Littlewood-
Offord problem [6]. But by the normal approximation to the binomial distri-
bution we can deduce that if n is large enough then this probability is at least
Φ(−2α) −

√
ε, where Φ is the distribution function of the standard normal

distribution. Thus, provided α is small enough (but independent of n), the
probability of error is at least

√
ε.

Since A fails with probability at most ε, it follows that with probability at
least 1−

√
ε, either C 6

√
εn, or C 6 M2/α.

To complete the proof that E(C) is not too large, it remains to show
that E(M2) is not too large. However, it is not too difficult to show that
E(M2) 6 n. (The crucial observation here is that E(M2) increases after each
step of the algorithm.) This completes the proof of the theorem.

References

[1] M. Aigner, Variants of the majority problem, Discrete Appl. Math. 137 (2004),
3–25.

[2] M. Aigner, Two colors and more, in Entropy, Search, Complexity, 9–26,
Springer, Berlin 2007.

[3] L. Alonso, E. M. Reingold and R. Schott, The average-case complexity of
determining the majority, SIAM J. Comput. 26 (1997), 1–14.

[4] D. Christofides, On randomized algorithms for the majority problem, Discrete
Appl. Math., to appear.

[5] G. De Marco and A. Pelc, Randomized algorithms for determining the majority
on graphs, Combin. Probab. Comput. 15 (2006), 823–834.

[6] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51
(1945), 898–902.

[7] M. E. Saks and M. Werman, On computing majority by comparisons,
Combinatorica 11 (1991), 383–387.

[8] A. C. C. Yao, Probabilistic computations: toward a unified measure of
complexity (extended abstract), in 18th Annual Symposium on Foundations
of Computer Science (Providence, R.I., 1977), 222–227, IEEE Comput. Sci.,
Long Beach, Calif.


